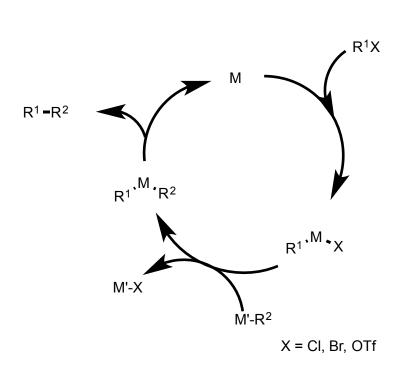
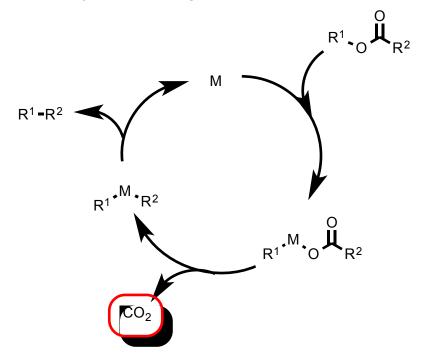
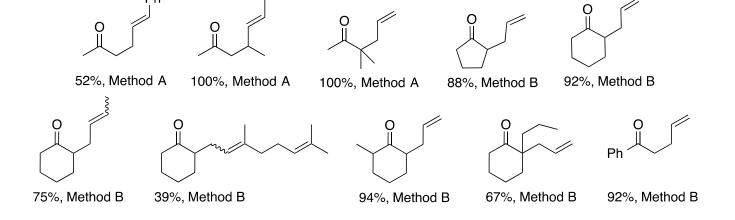

Transition Metal-Catalyzed Decarboxylative allylation and Benzylation reactions


2013. 05. 01 Haye Min Ko


Contents

- 1. Introduction to Decarboxylative Coupling
- 2. Decarboxylative Allylation of Enolates
 - 2.1. Asymmetric DcA of Enolates
 - 2.2. Applications
- 3. Sp²-Hybridized Carbon Nucleophiles
- 4. Sp-Hybridized Carbon Nucleophiles
- 5. Decarboxylative Benzylation
- 6. Conclusion


1. Introduction to Decarboxylative Coupling

Standard Cross-Coupling vs Decarboxylative Coupling

2. Decarboxylative Allylation of Enolates

a) Shimizu, I.; Yamada, T.; Tsuji, J. Tetrahedron Lett. 1980, 21, 3199.

b) Tsuda, T.; Chujo, Y.; Nishi, S.; Tawara, K.; Saegusa, T. J. Am. Chem. Soc. 1980, 102, 6381

Ester Enolates

Tsuji, J.; Yamada, T.; Minami, I.; Yuhara, M.; Nisar, M.; Shimizu, I. J. Org. Chem. **1987**, *52*, 2988.

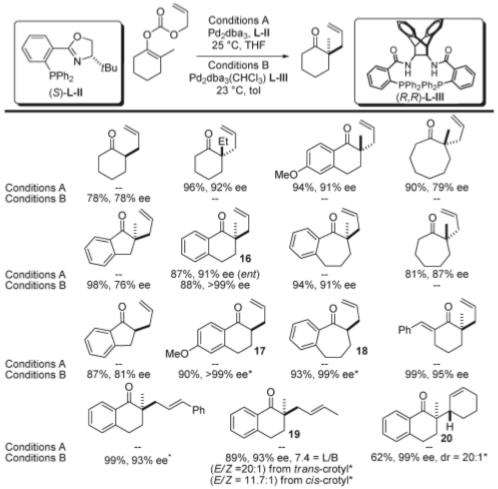
Ester Enolates

- a) Chattopadhyay, K.; Jana, R.; Day, V. W.; Douglas, J. T.; Tunge, J. A. *Org. Lett.* **2010**, *12*, 3042. b) Tardibono, L. P.; Patzner, J.; Cesario, C.; Miller, M. J. *Org. Lett.*, **2009**, *11*, 4076.

Regioselectivity in Allylation

Intermolecular Coupling of β-Keto Acids

entry	β-keto acid	allyl acetate	producta	yield
1 (ОН	AcO		93%
2	9	Aco		71%
3	9	AcO	11	78%
4	9	Z-10	11	64%
5	9	Aco	11	83%
6 F	» НОМ	AcO	Ph	89%

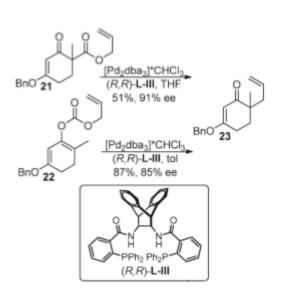

^a Pd(PPh₃)₄, 23 °C, THF or C₆H₆, 0.5-20 h

a Pd(PPh3)4, 23 °C, THF or C6H6, 0.5-20 h

a) Tsuda,T.;Okada,M.;Nishi,S.;Saegusa,T.*J.Org.Chem.***1986**, *51*, 421. b) Tsuda,T.;Tokai,M.;Ishida,T.;Saegusa,T.*J.Org.Chem.***1986**, *51*, 5216.

2.1. Asymmetric DcA of Enolates

Asymmetric DcA of Allyl Vinyl Carbonates


^{*} Dioxane solvent

a) Behenna, D. C.; Stoltz, B. M. J. Am. Chem. Soc. 2004, 126, 15044

b) Trost, B. M.; Xu, J. J. Am. Chem. Soc. 2005, 127, 2846.

c) Trost, B. M.; Xu, J.; Schmidt, T. J. Am. Chem. Soc. 2009, 131, 18343.

Asymmetric DcA of Allyl Vinylogous Carbonates

entry	n	\mathbb{R}^1	\mathbb{R}^2	solvent	temp (°C)	yield (%)	ee (%)
1	1	Н	Н	THF	-20	100	98
2	2	Н	Н	THF	0-4	100	94
3	1	Me	Н	THF	0-4	100	99
4	0	Me	Η	THF	0-4	96	80
5	1	Ph	Н	dioxane	23	100	97
6	1	H	Me	THF	0-4	91	79

entry	R	time (h)	yield (%)	ee (%)
1	Me	16	75	100
2	Bn	16	78	92
3	H ₂ C Ph	2	98	95
4	CH ₂ CO ₂ Et	1	80	92
5	CH2CH2CO2Et	4	90	73
6	CH2CH2CH2CO2E	t 2	86	94

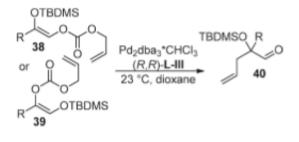
a) Trost, B. M.; Bream, R. N.; Xu, J. Angew. Chem., Int. Ed. 2006, 45, 3109.

b) Levine, S. R.; Krout, M. R.; Stoltz, B. M. Org. Lett. 2009, 11, 289.

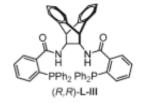
Asymmetric DcA of α-Fluoro- β-Ketoesters

a) Nakamura, M.; Hajra, A.; Endo, K.; Nakamura, E. *Angew. Chem., Int. Ed.* **2005**, *44*, 7248.

b) Burger, E. C.; Barron, B. R.; Tunge, J. A. Synlett 2006, 2824.


Asymmetric DcA of Acyclic Allyl Enol Carbonates

entry	R	time (h)	yield (%)	ee (%)
1	Me	3	96	94
2	Et	2	94	94
3	n-Pent	16	93	92
4	Bn	1	75	88
5	i-Pr	24	30	32


Protected α-Hydroxy Allyl Vinyl Carbonates

Protected α-Hydroxy Allyl Vinyl Carbonates

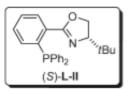
entry	SM	R	yield 40	yield 41
1	38	TBDMS	93	0
2	39	TBDMS	86	0
3	38	benzoyl	93	0
4	39	benzoyl	11	75 (dppe)
5	38	acetyl	40	60

entry	SM	R	yield (%)	ee (%)
1	38	Ph	93	92
2	39	Ph	89	91
3	38	p-MeOC ₆ H ₄	94	92
4	39	p-MeOC ₆ H ₄	86	92
5	38	o-NO ₂ C ₆ H ₄	69	79
6	39	o-NO ₂ C ₆ H ₄	69	72
7	38	2-furyl	81	93
8	38	1-cyclohexenyl	93	98
9	38	PhCC	76	89

a) Trost, B. M.; Xu, J.; Reichle, M. *J. Am. Chem. Soc.* **2007**, *129*, 282. b) Trost, B. M.; Xu, J.; Schmidt, T. *J. Am. Chem. Soc.* **2008**, *130*,11852.

2.2. Applications

Synthesis of Trospectomycin Sulfate


Synthesis of (±)-Lycopladine A

a) Herrinton, P. M.; Klotz, K. L.; Hartley, W. M. *J. Org. Chem.* **1993**, *58*, 678. b) DeLorbe, J. E.;Lotz, M. D.;Martin, S. F. *Org.Lett.* **2010**, *12*, 1576.

2.2. Applications

Synthesis of (-)-Cyanthiwigin

Synthesis of (+)-R-Dichronanone

- a) McFadden, R. M.; Stoltz, B. M. J. Am. Chem. Soc. 2006, 128,7738.
- b) Enquist, J. A., Jr.; Stoltz, B. M. Nature 2008, 453, 1228.

3. Sp²-Hybridized Carbon Nucleophiles

α-allylation of Acrylonitriles

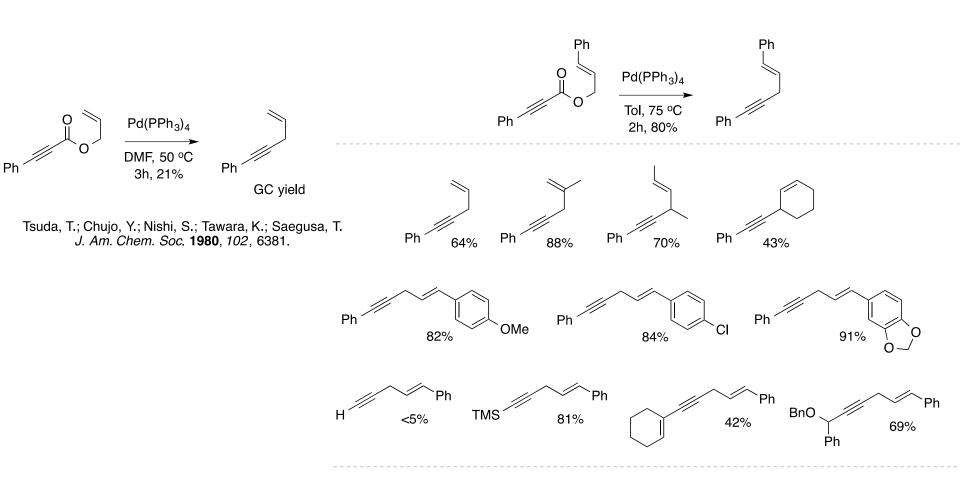
Tsuda, T.; Chujo, Y.; Nishi, S.; Tawara, K.; Saegusa, T. J. Am. Chem. Soc. **1980**, 102, 6381,

Silyl Enol Ethers

Snider, B. B.; Buckman, B. O. J. Org. Chem. 1992, 57, 4883

α-allylation of Coumarins

$$O_2N \xrightarrow{O} O \xrightarrow{O} O \xrightarrow{Pd(PPh_3)_4} O_2N \xrightarrow{O} O$$


$$73\% O_2N \xrightarrow{O} O$$

Jana, R.; Trivedi, R.; Tunge, J. A. Org. Lett. 2009, 11, 3434.

MeO O_2N 70% 62% 72% MeO MeO Br 62% 63%(23 °C) 37% ÓМе MeO 81% 66% 87% 73% 62% 82%

4. SP-Hydridized Carbon Nucleophiles

DcA of Acetylides

Intermolecular reaciton

AcO
$$R$$
 O $Pd(PPh_3)_4$ Cs_2CO_3 $Tol, 75 °C$ Ph $R = H; 75% $R = Ph; 76\%$$

Inner-sphere process

Rayabarapu, D. K.; Tunge, J. A. J. Am. Chem. Soc. 2005, 127, 13510.

Decarboxylative coupling of Allenes with Acetylides

	Entry	Product	Temp. (°C)	Time (h)	Yield (%)	E: Z
	1	<i>i</i> -Pr	100	1	38	
	'	Ph	70	3	68	
	2	Ph	100	4	97	
Pd(PPh ₃) ₄ Tol, 75 °C Ph 0.5h, >99%	3	Et Me	100	1	77	1.2 : 1
Sim, S. H.; Park, HJ.; Lee, S. I.; Chung, Y. K. Org. Lett. 2008 , 10, 433.	4	Ph Me	70	3	62	19 : 1
	5	Me Me	100	0.5	80	
	6	Me Me	100	0.5	87	
	7	Me Me	100 S	0.25	86	

5. Decarboxylative Benzylation

Introduction to Decarboxylative Benzylations

$$Pd(0) \text{ cat.}$$

$$Y-\text{Nu} =$$

$$QUE = \text{EWG} R_{N}R O_{O}O_{O}$$

$$(H)R_{H} H_{H} H_{H} H_{S}R$$

$$R_{II} Nu$$

$$R_{II}$$

Relative Rates

$$LG \xrightarrow{Pd(0)} {}^{\dagger}Pd \xrightarrow{} {}^{\dagger}Pd \xrightarrow{}^{\dagger}Pd \xrightarrow{}^{$$

Decarboxylative Benzyl Ether Synthesis

Kuwano, R.; Kusano, H. Org. Lett. 2008, 10, 1979

Decarboxylative Benzylation of Diphenylglycinate imines

Fields, W. H.; Chruma, J. J. Org. Lett. 2010, 12, 316.

Decarboxylative Benzylation of Acetylides

$$Ar \bigcirc O \bigcirc R \longrightarrow Pd(PPh_3)_4$$

$$Tol, 110 °C$$

$$15h$$

$$R$$

R = Ph, Alkyl, TMS R = H; no decarboxylative coupling

a) Rayabarapu, D. K.; Tunge, J. A. *J. Am. Chem. Soc.* **2005**, *127*, 13510. b) Pi, S.-F.; Tang, B.-X.; Li, J.-H.; Liu, Y.-L.; Liang, Y. *Org. Lett.* **2009**, *11*, 2309

Decarboxylative Benzylation of Acetylides

Intermolecular Decarboxylative Benzylation

Zhang, W.-W.; Zhang, X.-G.; Li, J.-H. J. Org. Chem. 2010, 75, 5259.

Decarboxylative Benzylation of Enolates

Torregrosa, R. R. P.; Ariyarathna, Y.; Chattopadhyay, K.; Tunge, J. A. J. Am. Chem. Soc. 2010, 132, 9280.

6. Conclusion

- 1. Decarboxylative coupling reactions offer a "greener" alternative to standard allylation and benzylation reaction.
- 2. Developing interceptive decarboxylations of less activated pronucleophiles would allow the synthsis of many relevant chemical building blocks.

Thank you

Quiz!

Quiz

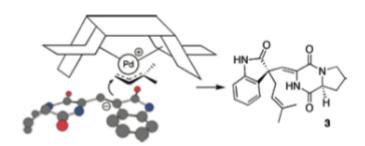


Figure 3. Model for observed selectivity.

Quiz!